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Abstract

Dispersion from a continuous line source located at the wall of a turbulent channel and transport over a step change

in wall heat flux are studied for fluids with Prandtl numbers between 0.1 and 2400. Direct Numerical Simulation is used

to develop the velocity flow field, which is then coupled with a particle tracking algorithm to describe the behavior of

heat or mass markers released from instantaneous sources on the wall. The positions in time and space of these markers,

which have been available as a database created by Papavassiliou and Hanratty [Int. J. Heat Mass Transfer 40 (6)

(1997) 1303], are used as the building block for the study of passive scalar transport from the wall of the channel.

Qualitative and quantitative results are obtained with particular emphasis on transport parameters from the

wall. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Turbulent scalar transport plays a crucial role in a

number of diverse applications such as the design of

heat exchange equipment, the design of reactors and

mixing tanks, and the dispersion of pollutants in the

atmosphere. Specifically, turbulent transport at very low

Prandtl, Pr, number fluids has applications in liquid

metal heat transfer. High Prandtl or Schmidt number

transport is important in lubrication and even higher

Schmidt, Sc, numbers are found in electrochemical ap-

plications for semiconductor manufacturing.

The development of methodologies for the Direct

Numerical Simulation (DNS) of turbulent flows in the

last 15 years allowed the possibility to shed new light

on the fundamental phenomena that govern turbulent

transport [1]. On the other hand, DNS is limited by the

capabilities of high performance computers to simula-

tions in relatively simple geometries and low Reynolds

numbers. In the case of heat transfer, DNS has been

implemented for a relatively narrow range of fluids (Pr

between 0.025 and 10) [2–7]. Each one of these simula-

tions described a specific configuration of the transport

problem (i.e. isothermal walls or constant heat flux

walls). Laboratory studies have been conducted [8] that

replicated and validated the DNS virtual experiments.

The restriction in the range of Pr or Sc arises from the

fact that in order to resolve all the scales of motion and

temperature, the number of grid points has to be anal-

ogous to Pr3=2Re9=4. Furthermore, at high Pr, the tem-

perature gradient close to the wall is very steep and an

Eulerian simulation would require very small time steps

and very fine resolution; the computational cost is

prohibitive. At low Pr the mean temperature gradient,

d�TT=dy, in the center region of the channel has a finite

and significant value (for the case of heat transfer from a

hot wall to a cold wall and isothermal boundaries). The

temperature fluctuation production term, vhd�TT=dy, has
a large value at the center of the channel. It follows that

the center region of the channel should be very finely

resolved in addition to the wall region, which restricts

the lower Pr possible. Isoflux boundary conditions, that

result in flat mean temperature profiles at the center of

a channel, can be used for DNS of low Pr fluids but

cannot eliminate the restriction of an upper Pr. Exper-

iments are easily done for isothermal walls [8,9]. The

Lagrangian Scalar Tracking technique, however, has

been used [10] to reconstruct first-order statistics for Pr
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as high as 2400. Another advantage of this Lagrangian

technique is that information from one computation can

be used to reconstruct the behavior in different problem

configurations: isothermal and isoflux walls, step change

in wall temperature or heat flux, continuous or instan-

taneous line source behavior.

The contributions of the present paper can be sum-

marized as: (a) the presentation of a computational

method that can be used to calculate transport proper-

ties, which is based on the velocity field but does not use

the Reynolds analogy, and (b) the study of turbulent

heat/mass transfer from continuous wall sources in a

wide range of molecular Prandtl or Schmidt numbers

(liquid metals, cryogenic fluids, refrigerants, air, and

electrolytic fluids).

2. Background

2.1. Turbulent transport of heat or mass in an Eulerian

framework

In an Eulerian description of turbulent transport, the

temperature 1 is decomposed as T ¼ �TT þ h. The tem-

perature can become dimensionless using the friction

temperature T �, T � ¼ ðqwÞ=ðqCpu�Þ, where qw is the heat

Nomenclature

A constant in the power law relation for the

heat transfer coefficient

C concentration

c1; c2 coefficients in the power law relation for the

ground level temperature downstream from

a continuous line source (see Eq. (12))

Cp specific heat at constant pressure

D diffusivity

Ec;Em eddy conductivity, eddy viscosity

h half channel height

K heat transfer coefficient

k thermal conductivity

m exponent in the power law relation for the

heat transfer coefficient

Nu Nusselt number (Nu¼Kh/k)

P1 conditional probability of a marker being at

a location ðx; yÞ at time t, given that it was

released at a known time from a known lo-

cation at the wall

P2 joint probability of a marker being at a lo-

cation ðx; yÞ
P3 marginal probability of a marker being at a

distance y from the wall

P4 probability of a marker being at a distance y

from the wall at x ¼ x1
Pr Prandtl number Pr ¼ m

a

� �
q heat flux

RL Lagrangian correlation coefficient

Re Reynolds number Re ¼ Uc h
m

� �
Sc Schmidt number Sc ¼ m

D

� �
St Standon number St ¼ Nu

Re Pr

� �
T temperature

t time
~UU Eulerian velocity vector

u; v;w fluctuating velocity components in the x; y; z
directions

~VV Lagrangian velocity vector

x; y; z streamwise, normal and spanwise coordi-

nates

X displacement of a marker from the source in

the x direction
~XX position vector of a marker

x0! initial position vector of a marker

Greek symbols

a thermal diffusivity

dd boundary layer displacement thickness

dd ¼
R1
0

1� U
Uc

� �
dy

� �
dT thermal layer thickness

Dt time step

Dx;Dy bin size in the x and y directions

h temperature fluctuation

k lateral half plume width

m kinematic viscosity

n dimensionless distance from the wall based

on k
q fluid density

r standard deviation of a probability density

function

sw shear stress at the wall

Superscripts and subscripts

ð Þ ensemble average

ð ÞL Lagrangian variable

ð Þþ value made dimensionless with the wall pa-

rameters

ð Þ� friction value

ð Þ1 value upstream from the thermal region

ð Þc value at the center of the channel

ð Þmax maximum value

ð Þo value at the instant of marker release

ð Þw value at the wall of the channel

1 The scalar quantity used in this paper is the temperature

and the dimensionless number is the Prandtl number. The

results can be applied directly to the case of turbulent mass

transfer without chemical reaction by replacing temperature

with concentration and Prandtl number with Schmidt number.

3572 D.V. Papavassiliou / International Journal of Heat and Mass Transfer 45 (2002) 3571–3583



flux at the wall defined in terms of the thermal con-

ductivity k as qw ¼ �kðd�TT=dyÞw. The dimensionless

temperature in wall units, Tþ, is then defined as

Tþ ¼ T
T � ¼ � TqCpu�

ðkðd�TT=dyÞÞw
¼ �Pr

T
ðd�TT=dyþÞw

; ð1Þ

where yþ is the distance from the wall in viscous wall

units (yþ ¼ yu�=m). In a fully developed state, the heat

flux is constant through the channel and a dimensionless

heat transfer coefficient, Kþ, can be defined as Kþ ¼ K=
ðqCpu�Þ with K given by

qw ¼ KðTc � TwÞ; ð2Þ

where Tc is the mean temperature at the center of the

channel and Tw is the mean temperature at the wall. The

above equations and definitions can be used to derive

the following relation:

Kþ ¼ 1

Pr
dð�TT=ðTc � TwÞÞ

dyþ

" #
w

: ð3Þ

At high Pr, the thermal layer is very thin and the velocity

field inside it can be described using a Taylor series ex-

pansion in terms of the dimensionless distance from the

wall yþ. The analogy between momentum and heat or

mass transfer predicts that the eddy conductivity is given

as Eþ
c 	 yþn, where n is an integer greater than or equal

to 3, which results to a power law relation for Kþ [11]

Kþ ¼ APrm: ð4Þ

2.2. Lagrangian turbulent transport

Einstein [12] developed a relation that describes the

dispersion of fluid particles in a non-turbulent field in

terms of the mean-squared displacement from the source

in the x direction:

dX 2

dt
¼ 2D; ð5Þ

where D is the molecular diffusivity. Taylor [13] devel-

oped a similar relation for the dispersion of fluid parti-

cles from a point source in homogeneous, isotropic

turbulence:

dX 2

dt
¼ 2u2

Z t

0

RLðsÞds; ð6Þ

where u2 is the mean-square of the x-component of the

velocity of the fluid particles and RL is the Lagrangian

correlation coefficient. An important implication of Eq.

(6) is that the history of the particle motion affects

the rate of dispersion through RL. Dispersion of heat or

mass markers introduces an additional complication,

since the markers can move off of a fluid particle as a

result of molecular diffusion. Saffman [14] developed a

relation for dispersion in this case by defining a material

autocorrelation function, which differs from the La-

grangian correlation in that it correlates fluid velocity

components along the trajectories of markers instead of

fluid particles.

Hanratty [15] used Taylor’s theory to describe the

transfer of heat in turbulent channel flow. An infinite

number of line sources of heat along one wall was used

to describe the hot plane and an infinite number of line

sinks of heat along the other wall described the behavior

of the cold plane. A clearer physical picture for heat

transport emerged through this approach. The variation

of the eddy conductivity with the distance from the wall

was associated with the time dependency of turbulent

diffusion [16]. Temperature gradients close to the wall

were found to result from thermal markers that had

been in the field for small periods of time. This analysis

assumed a homogeneous and isotropic velocity field.

Information about the behavior of such wall sources is

needed in order to use Lagrangian methods to describe

Eulerian temperature fields in other, more realistic sit-

uations. There are such investigations in the literature

(see [17–22]) that have carried out experimental studies

of wall sources. However, none of these studies give the

space–time behavior of an instantaneous source and

only the study of Incropera et al. [21] examines transport

in a fully developed channel flow.

3. The Lagrangian scalar tracking approach

A Lagrangian approach is a natural way to describe

transport and it can provide valuable physical insights.

This work extends the use of Lagrangian methods to

study the transfer of heat in flows with continuous

sources of heat at the wall of a channel and with a

step change in the heat transfer flux from the wall of a

channel. The stochastic particle tracking technique is

described in a thesis by Kontomaris [23], where more

detailed information regarding the numerical method

can be found. Kontomaris and Hanratty [24] have used

Lagrangian tracking to study the behavior of fluid par-

ticles released in the center of a turbulent channel flow.

The complete methodology, which includes the sto-

chastic tracking of heat or mass markers along with the

statistical post-processing of the results to obtain scalar

profiles, will be referred to as the Lagrangian Scalar

Tracking (LST) method. It has also been implemented

by another laboratory for the simulation of mass

transfer in low Re fluids and non-Cartesian geometry for

bubble dissolution in the presence of surfactants and

Sc ¼ 500 [25].

3.1. Marker tracking

The velocity field of a Newtonian and incompressible

fluid was calculated using a DNS of fully developed
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turbulent flow in a channel [3,6,26]. The flow was re-

garded periodic in the streamwise and spanwise direc-

tions, with periodicity lengths equal to the size of the

computational box in these directions (4ph
 2h
 2ph
in x; y; z; where h ¼ 150). Numerical experiments at Re ¼
2660 were conducted. The resolution for the runs was

128
 65
 128. The accuracy of these simulations

has been validated and documented by a comparison

with laboratory measurements at the same conditions

[3,27].

In the Lagrangian framework, the system of refer-

ence moves with the fluid particles, or the heat or mass

markers in the case of turbulent heat or mass transport.

The trajectories of such heat or mass markers released

from the wall can be calculated in the hydrodynamic

field created by the DNS with a particle tracking method

[28]. The basic assumption is that a heat marker at each

time has the velocity of the fluid particle that carries it,
~VV ðx0!; tÞ ¼ ~UU , where ~VV ðx0!; tÞ is the Lagrangian velocity

of a marker that was released at location x0! and ~UU is the

Eulerian velocity of the fluid at the location of the

marker at time t. The equation of particle motion then is

~VV ðx0!; tÞ ¼ o~XX ðx0!; tÞ
ot

: ð7Þ

The equation of particle motion was integrated using an

Adams–Bashforth scheme. Each marker moved due to

two effects, the convective effect and the molecular ef-

fect. The convective part was calculated from the fluid

velocity at the particle position. A mixed sixth-order

Lagrangian–Chebyshev interpolation scheme was used

to calculate the velocity vector between grid points. The

effect of molecular diffusion was simulated by imposing

a 3D random walk on the particle motion; it was added

on the convective part of the motion after each time step

and it took values from a Gaussian distribution with

zero mean and standard deviation r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Dt=PrÞ

p
in

wall units. This follows from Einstein’s theory for

Brownian motion (see Eq. (5)). Using this methodology,

the Prandtl number does not limit LST. Note also that

the presence of these markers does not affect the

flow field, so that the behavior of a passive scalar was

simulated.

The results presented here use the database created

by Papavassiliou and Hanratty [10]. Two sets of tracking

experiments were performed. In the first set, Prandtl

numbers of 0:1; 1; 10 and 100 were studied with 16,129

markers released instantaneously for each Pr in the same

velocity field. The initial position of the markers was on

a uniform grid that covered the bottom wall of the

channel. No more than one marker was released from

each cell in order to avoid the introduction of markers

with highly correlated initial conditions. In the second

set, a different velocity field was used to start the cal-

culations. The two initial hydrodynamic fields were flow

realizations that were 2750 wall time units apart, which

is longer than the longest Eulerian time scale in this type

of flow, in order to acquire statistically non-correlated

samples. The number of markers and their initial loca-

tions were the same as in the first set of runs. However,

the Prandtl numbers were 0:7; 1; 3; 500 and 2400. The

second run at Pr ¼ 1 was conducted in order to estimate

the statistical variations of the results and to assess the

effect of different initial velocity fields. It was found that

the difference in the statistical behavior of the two Pr ¼ 1

runs was less than 1%. Each set of computer experiments

was carried out on one processor of a CONVEX C3880

supercomputer and for up to 2750 wall time units. The

computational time was in the order of 27 Service Units

per 500 iterations with Dt ¼ 0:25; tracking 16,129 mark-

ers for each Pr required about 10% of the computational

time that was required for the hydrodynamics DNS. The

criterion to terminate the tracking was statistical. The

walls of the channel confine the motion of the markers

and force the probability function, P, to find a marker

at a distance y from the wall to become uniform. At

stationary state, the variance of P should equal that of

a uniform distribution between y ¼ 0 and y ¼ 2h, r2 ¼
ð2h� 0Þ2=12 ¼ 7500.

3.2. Statistical post-processing

Let P1ðx� x0; y; t � t0 j t0; x0Þ be the joint and condi-

tional probability density function for a marker to be at

a location ðx; yÞ at time t, given that the marker was

released at x0 at time t0. For each experiment, the tra-

jectories of all markers are used as an ensemble to obtain

P1. Since the flow field is homogeneous in the x and z

directions, there is no statistical dependence on the ini-

tial location of the markers. This probability can be

interpreted physically as concentration [29] and, thus, as

a snapshot of a cloud of contaminants released instan-

taneously from x0 ¼ 0. Probability P1 can be used to

extract information about the behavior of a continuous

line source at x0 by integrating over time

P2ðx� x0; y jx0Þ ¼
Z 1

t0

P1ðx� x0; y; t � t0 j t0; x0Þdt: ð8Þ

The behavior of a heated plane is described with a

series of continuous line sources covering the plane.

Therefore, the mean temperature profile in a channel,

where heat is added to the fluid from the bottom wall at

a constant rate (isoflux conditions), can be synthesized

from P2 by integrating P2 over the streamwise direction

P3ðyÞ ¼
Z 1

x0

P2ðx� x0; y jx0Þdx

¼
Z 1

x0

Z 1

t0

P1ðx� x0; y; t � t0 j t0; x0Þdtdx: ð9Þ

Distribution P3 can be interpreted physically as the mean

temperature profile in a channel with a heated wall,
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�TT ðyÞ ¼ P3ðyÞ. The above expression corresponds to the

case when a constant number of markers is released at

every time step, an isoflux boundary condition.

The behavior of heat transport over a plate that has a

step change in heat flux at x0 can also be synthesized

from P2 as follows

�TT ðx1; yÞ ¼ P4ðx1; yÞ ¼
Z x1

x0

P2ðx� x0; y jx0Þdx

¼
Z x1

x0

Z 1

t0

P1ðx� x0; y; t � t0 j t0; x0Þdtdx: ð10Þ

The physical interpretation of P4 is that it represents the
mean temperature profile at distance ðx1 � x0Þ down-

stream from a step change in heat flux from the wall

at x0.
The total number of markers that are present in the

flow field at any time is 16,129. This is the size of the

sample space for the calculation of P1. For the calcula-

tion of P2, which is an integration in discrete time of P1,
the number of markers that are used increases with the

number of discrete time steps. The integration to time

tþ ¼ 2750 involves the calculation of the position of

16,129
 2750 ¼ 4:435475
 107 markers.

Probability P2 is calculated for each Pr using a grid

that covers the flow domain and counting the markers

that are present in each grid cell. The grid in the y di-

rection is constructed either by dividing the width of the

channel uniformly in 300 bins (when Pr6 100), or by

using Chebyshev collocation points to generate 200 bins

(when Pr > 100) in order to increase the resolution clo-

ser to the wall. In the x direction, the grid is stretched, in

order to take measurements at long distances down-

stream from the source. The stretching in the x direction

followed the relation Dxn ¼ 1:06nDxðn�1Þ with Dx0 ¼ 5 in

wall units.

4. Results

4.1. Behavior of a continuous line source at the wall

Fig. 1 presents a comparison of our LST results with

measurements by Poreh and Cermak [17] presented in

Poreh and Hsu [18] for the mean concentration profile

downstream from a continuous line source at the wall in

a turbulent boundary layer. The experiments involved

the diffusion of a scalar quantity (ammonia gas in air,

Sc ¼ 0:7) from a steady line source within a turbulent

boundary layer. The scaling in the figure follows Poreh

and Cermak’s suggestion to scale the concentration with

the maximum concentration, Cmax, and the distance

from the wall with the lateral plume half-width, k, which
is defined from the following:

C
Cmax

¼ f ðnÞ; ð11Þ

where n ¼ y=k and f ð1Þ ¼ 0:5. The experimental data

are for the case of mass transfer where the diffusing

cloud is submerged into a momentum boundary layer.

The agreement between LST and the experiments is

quite good. However, as pointed out by Shlien and

Corrsin [30], the use of Cmax and k as scaling parameters

is an insensitive way to determine similarity, since (i) two

points on a monotonically decreasing curve are forced to

coincide (the n ¼ 0 and the n ¼ 1 points), and (ii) the

slope of this curve at n ¼ 0 has to be zero.

Shlien and Corrsin measured the temperature profile

behind a heated wire located at the wall of a turbulent

boundary layer. Heat was supplied to the wire at a

constant rate, so that their case is equivalent to the

calculation of P2 profiles using LST. The Prandtl num-

ber was 0.71 and the Reynolds number based on the

displacement thickness of the turbulent boundary layer,

dd, at the location of the wire was 6300. Shlien and

Corrsin scaled their temperature results with the maxi-

mum temperature, similar to Poreh and Cermak, but

they scaled the distance from the wall and the distance

downstream from the source with the displacement

thickness of the turbulent boundary layer. Fig. 2 pre-

sents a comparison of the LST results for Pr ¼ 0:7 with

the experimental results of Shlien and Corrsin. In order

to calculate the appropriate length scale for the channel

flow DNS, the assumption was made that the mean

centerline velocity of the channel can be used in place of

U1 for the calculation of the momentum boundary

layer. The calculated value for the DNS is dd ¼ 23:2
and the Re for the DNS based on this length scale and

the mean centerline velocity is 490. There is qualitative

agreement for all cases, and quantitative agreement close

to the wall and close to the source. Given the differences

Fig. 1. Comparison of the Lagrangian simulation results

(shown as lines) for the concentration profiles downstream from

a continuous line source with measurements by Poreh and Hsu

[18] in a turbulent boundary layer at Pr ¼ 0:7 (shown as data

points).
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in the problem setup (i.e. the experimental measure-

ments were taken at a higher Re and in a developing

turbulent boundary layer), the agreement is quite en-

couraging for the validity of the LST results.

Figs. 3(a) and (b) present the mean concentration

profile downstream from the source as a function of Pr

using the displacement thickness as a length scale. The

value of dd for the velocity field does not change

downstream of the heat source, so that scaling with the

channel half-height h would result in similar plots. It is

also seen in Fig. 3 that as the Pr increases the cloud is

more concentrated close to the wall of the channel, as

expected.

Figs. 4(a) and (b) present the ground level tempera-

ture downstream from the continuous source for low

and high Pr runs, respectively. The values are normal-

ized with the ground level temperature immediately

downstream from the source (in the interval 0 < ðx� x0Þ
< 5) for Pr ¼ 1. If one assumes a relation of the form

Tw ¼ c1ðx� x0Þc2 ; ð12Þ

then Table 1 presents the values of the coefficients in this

equation. Fig. 4(b) shows that for higher Pr there is a

change in the slope of the line at long distances down-

stream from the source location. It appears that there

are two zones of plume development, that become evi-

dent when the Pr increases. This phenomenon is not an

end effect that arises at the front of the plume, simply

because the front of the plume is even further down-

stream and has not been plotted in the figure. The ob-

servation of this second zone can be interpreted by

keeping in mind that the behavior of a cloud of mark-

ers resulting from a continuous line source (plume of

markers) is the result of the integrated behavior of a

cloud of markers that was released instantaneously from

a line source (puff of markers). It has been reported that

the behavior of a puff in a channel flow can be distin-

guished in three zones: Zone I, where molecular diffu-

sion dominates the dispersion, Zone II, which is the

transition zone, and Zone III, where turbulent con-

vection dominates the dispersion [31]. The extent of

the first two zones depends on the Pr. In the transi-

tion zone, which becomes more pronounced as the Pr

increases, markers ‘‘leak’’ out of the cloud and create

a second area of high marker concentration down-

stream of the main cloud. The main cloud has been

observed to be mostly located in the viscous wall region,

so it moves downstream with low average velocity, while

the ‘‘leaked’’ markers tend to be uniformly distrib-

uted across the channel, and move with the bulk veloc-

ity of the fluid. Considering now the case of a plume,

the temperature profile downstream from the source is

Fig. 2. Mean temperature profile downstream from a contin-

uous line source at Pr ¼ 0:7 using the DNS/LST method and

comparison to measurements by Shlien and Corrsin (SC) [30] in

a turbulent boundary layer.

(a) (b)

Fig. 3. Mean temperature or mean concentration profile downstream from a continuous line source using the boundary layer dis-

placement thickness as length scale. Data by Shlien and Corrsin (SC) [30] are shown as dark circles: (a) ðx� x0Þ ¼ 20dd;

(b) ðx� x0Þ ¼ 100dd.
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affected by different parts of the composing puffs of

markers. Zone I of plume development is affected by

puffs in their Zone I stage of development, and Zone II

of plume development is affected by a collection of puffs

that are in their Zones II and III of development. Table

1 also presents the coefficients in Eq. (12) for the second

plume Zone. As the Prandtl number increases, the

ground level concentration Tw½ðx� x0Þ < 5 increases

because the elementary puffs of markers that compose

the plumes stay closer to the wall for a longer time.

The relation between the puff and the plume behavior

can be further demonstrated by examining the reason

for the clearly discernible Zone I of plume development

at higher Pr. It has been found [31] that if we define a

timescale for which the puff is 95% dominated by mo-

lecular diffusion (Brownian motion of the markers as

predicted by Einstein’s relation), then the Pr depen-

dence of this timescale is 8:34Pr0:38. It has also been

found that the mean puff position in this sub-region of

Zone I is analogous to ðtþ � tþ0 Þ
3=2

. For example, a puff

for Pr ¼ 2400 travels for a time of about ðtþ � tþ0 Þ ¼

8:34 24000:38 ¼ 160:56 due to Brownian motion, and

reaches on average a distance ’ 160:563=2 ¼ 2034 down-

stream. A puff for Pr ¼ 100 travels due to Brown-

ian motion to a distance of about x ’ 332 downstream

from its source and a puff for Pr ¼ 1 to a distance of

about x ’ 24. As the Pr decreases, this distance is smal-

ler. Beyond this distance, the effects of convection first by

viscous velocity and then by turbulence become impor-

tant. The extent of this region of puff travel appears to be

strongly correlated to the extent of Zone I of plume de-

velopment, as seen in Fig. 4(b).

Batchelor [32] has developed a theory for the diffu-

sion from sources in a turbulent boundary layer, based

on the assumption that wall similarity applies to La-

grangian quantities. His theory predicted a dependence

of the ground level concentration (or temperature) of the

form Tw 	 x�1. The present results for Zone I of plume

development show that the ground level temperature

downstream from the source declines with different

rates depending on the Pr. The dependence is closer to

the value predicted by Batchelor for Pr ’ 1. As the Pr

(a) (b)

Fig. 4. Mean ground level temperature downstream from a continuous line source of heat at Pr ¼ 1: (a) low Pr runs (Pr6 3); (b) high

Pr runs (PrP 10).

Table 1

Coefficients for the ground level temperature Tw vs. x correlation for the two Zones of plume development, when the ground level

temperature is normalized with the ground level temperature immediately downstream from a Pr ¼ 1 source

Pr Zone I Zone II

cI1 cI2 cII1 cII2
0.1 0.37 )0.645
0.7 3.397 )0.86
1 4.885 )0.89
3 6.435 )0.786 43.428 )1.145
10 16.243 )0.800 474.97 )1.4145
100 12.798 )0.433 5:6
 105 )2.209
500 18.934 )0.386 3:071
 1010 )3.5393
2400 32.366 )0.389 2:85
 1012 )4.1371
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increases, the dependence is described by the relation

Tw 	 x�0:4.

Batchelor’s analysis did not address the issue of the

effects of Pr and assumed that the thermal layer is within

the velocity logarithmic layer. A basic assumption in the

calculations for the asymptotic ground level concentra-

tion as x ! 1 was that the shape of the puff (the dis-

tribution P1) is similar at all times and that the length

scale is the same in the y and in the x direction. This

assumption makes sense for low Pr fluids and for the

case of flow in a boundary layer, when the conceptual

picture of a puff is the picture of a balloon that expands

with time. However, as discussed briefly here and in

more detail elsewhere [31], the high Pr puffs do not ex-

pand like a balloon, but exhibit three zones of devel-

opment. Furthermore, the presence of the channel wall

opposite to the wall that contains the source constricts

the expansion of the puff in the y direction.

4.2. The case of a step change in the wall heat flux

The case of transport downstream from a step change

in wall heat flux is considered in this section. It is a

variation of the usually named ‘‘Graetz problem’’, which

describes heat transfer from the wall of a vessel with

constant heat flux [33]. Teitel and Antonia [9] have taken

temperature measurements in a fully developed turbu-

lent channel flow with a step change in the heat flux

applied to one of the walls of the channel. The Reynolds

number for these experiments in wall units was 180; it

is comparable to the present DNS Reynolds number.

Antonia et al. [34] have also measured the tempera-

ture field in a thermal layer that grows inside a turbu-

lent boundary layer, which was subject to a small step

change in surface heat flux. The Re of those experiments

in wall units was 1500. Fig. 5 presents the calculated

mean temperature profile downstream from the edge of

the heated section of the channel wall calculated with

LST, according to Eq. (10) for Pr ¼ 0:7. The experi-

mental measurements of Teitel and Antonia are pre-

sented for comparison, as well as the measurements of

Antonia et al. for a long distance downstream from the

step change in wall heat flux. The data of Fulachier (as

were presented in reference [34]) for the case of a step

change in the wall temperature of a boundary layer are

also shown. The agreement between LST and experi-

ments is quite good for the cases of x=h ¼ 7:6, 21.4, 32.4
and good for the cases of x=h ¼ 17:1 and 47.6. Teitel and

Antonia’s measurements show temperature profiles that

are very close to each other for every two distances, i.e.

almost the same for x=h ¼ 17:1 and 21.4, and x=h ¼ 32:4
and 47.6. Even the higher Re data appear to agree with

the LST results. The profile predicted by Kader [35]

using a semi-empirical formulation for a fully developed

turbulent boundary layer is also presented in Fig. 5. The

LST results appear to tend towards Kader’s predictions

at long distances downstream from the edge of the

heated region.

Fig. 6 is a comparison of the development of the

outer edge of the thermal layer for the case of Pr ¼ 0:7
between experiments and the LST. The thermal layer

thickness, dT, is defined following the suggestion of

Antonia et al. [34] as the distance from the wall y ¼ dT at

which ðT � T1Þ ¼ 0:01ðTw � T1Þ. Given the different Re

between the laboratory and the numerical experiments,

and the fact that the laboratory data were obtained for

the case of a thermal layer within a developing velocity

boundary layer, the agreement is good.

The heat transfer coefficient can be calculated using

Eq. (3). The calculation depends on the measurement

Fig. 5. Mean temperature profiles downstream from a step

change in the heat flux from the wall of a channel. The lines are

LST results and the points are measurements from Teitel and

Antonia (TA) [9], Antonia et al. [34] and Fulachier.

Fig. 6. Change of the thickness of the thermal layer, dT, with

the distance downstream from the thermal entry region. The

LST results are normalized with the channel half-height and the

results of Antonia et al. [34] are normalized with the thickness

of the velocity boundary layer.

3578 D.V. Papavassiliou / International Journal of Heat and Mass Transfer 45 (2002) 3571–3583



of the gradient of the mean temperature (calculated

through Eq. (10)) at the wall. Since the mean tempera-

ture is found at the center of a bin with the use of sta-

tistical methods, there is a need to have appropriately

small bin widths near the wall and to extrapolate the

temperature profile to the wall. The temperature profile

inside the conductive transport sublayer is known to be
�TTþ ¼ Pr yþ. Inside the conductive wall sublayer, there-

fore, a linear extrapolation is accurate. It is necessary,

however, to make sure that several bins lie within the

conductive sublayer, whose thickness depends on the Pr.

The Nusselt number ratio NuðxÞ=Nuðx ! 1Þ as a

function of the distance downstream from the heated

edge is presented in Fig. 7 for the different Pr fluids

examined. As the Pr increases, the value of the Nusselt

number ratio decreases for the same position down-

stream from the location of the step change in the wall

heat flux, x0. This type of behavior is in agreement with

Eulerian results obtained numerically for the entry re-

gion of a circular pipe for Pr ¼ 0:02, 0.72 and 14.3 with

uniform wall heat [36]. The Lagrangian interpretation of

this observation is related to the fact that the transfer of

heat follows the expansion of the heat marker cloud.

The driving force for heat transport between two loca-

tions in the Lagrangian sense is the difference in the

number of markers present in these two locations. The

Nu is proportional to the heat transfer coefficient, which

is inversely proportional to the driving force for transfer

when the heat flux remains constant. At high Pr, the

cloud of markers is mostly located close to the wall of

the channel. This configuration persists for all distances

downstream from x0 and thus the driving force is simi-

lar for all distances downstream from x0. For a low Pr

cloud, the markers leave the viscous wall layer, due to

large molecular jumps, and the cloud becomes more

disperse in the vertical direction as the distance ðx� x0Þ
increases. Therefore, for low Pr the cloud presents a

changing configuration as it convects downstream from

x0, which results in significant changes in the Nusselt

number.

It is also important to note that the Nusselt number

ratio reaches the value of one at shorter distances

downstream from the edge of the thermal layer as the Pr

becomes higher. This means that the plumes at higher Pr

affect the downstream wall temperature over a smaller

distance from the continuous line source. For example,

the Nusselt number ratio changes within a short distance

(x=h < 5) for high Prandtl numbers (Pr ¼ 2400), and this

distance agrees well with the length of Zone I of a plume

with the same Prandtl number. The value of Tw down-

stream from a plume (see Fig. 4) can be used as a

measure of the relative effect that sources at different

distances upstream from a point at the wall have on the

local Tw for the case of a step change in heat flux. This

relative effect is shown in Fig. 4 to be strong for sources

close to a point and weak for sources away from it as the

Pr increases. For low Pr, the relative effect of sources at

different distances from a point decreases in a more

uniform way.

In order to provide more information regarding the

applicability of the Lagrangian method in different cases,

the LST results are compared with experimental results

for the case of a step change in the wall temperature.

Johnson and Whippany [37] and Hoffmann and Perry

[38] have conducted such experiments in wind tunnels

and hþ equal to 2000 and 3000, respectively. The ther-

mal layer was under development within a developing

velocity boundary layer in both of these experiments.

Fig. 8 presents the Standon number as a function of

the distance downstream from the step change in wall

Fig. 7. Change of the Nusselt number ratio with the distance

downstream from the thermal entry region.

Fig. 8. Variation of the heat transfer coefficient as a function of

the distance downstream from the thermal entry region.
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temperature. The distance is normalized with the chan-

nel half-height for all cases, experimental and numerical.

The Lagrangian results were obtained by keeping the

number of markers at the wall of the channel constant.

The use of weight functions to account for the contri-

bution of sources upstream from each point was neces-

sary. The Standon number for a thermal region due to a

step change in wall heat flux is also shown in the same

figure.

Fig. 9. Variation of the Standon number as a function of the

distance downstream from the thermal entry region that results

from a step change in the wall temperature and from a step

change in the wall heat flux (Pr ¼ 0:7). The experimental results

are from Johnson and Whippany (JW) [37] and Hoffmann and

Perry (HP) [38].

Table 2

Coefficients for the Kþ vs. Pr correlation for PrP 100 (Kþ ¼
APrm)

x=h A m

1 0.1205 )0.670
2 0.1053 )0.677
5 0.0950 )0.694
10 0.0915 )0.704
25 0.0871 )0.701
50 0.0853 )0.698
100 0.0847 )0.698

(a) (b)

(c)

Fig. 10. Mean temperature at different distances downstream from a step change in wall heat flux: (a) Pr ¼ 100; (b) Pr ¼ 500;

(c) Pr ¼ 2400.
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The actual heat transfer coefficient as a function of

the distance downstream from x0 for different Pr is pre-
sented in Fig. 9. The values decrease with Pr for every

case. The Lagrangian interpretation is provided in the

discussion above. The heat transfer coefficient is in-

versely proportional to the driving force (see Eq. (2))

and therefore smaller when the cloud of markers is more

uniformly dispersed in the direction of transfer. At low

Pr, this is the case more so than for high Pr and there-

fore the heat transfer coefficient is higher. Table 2

presents the parameters A and m (see Eq. (4)) for the

dependence of the heat transfer coefficient on the mo-

lecular Pr of the fluid at different distances downstream

from the point of step change in heat flux. At long dis-

tances downstream from point x0, the relation goes to

Kþ ¼ 0:085Pr�0:70 ð13Þ

for the high Pr cases (PrP 100). The value of the ex-

ponent is different than the Deissler asymptotic predic-

tion of Kþ 	 Pr�3=4 or the Sieder–Tate prediction

Kþ 	 Pr�2=3, but is closer to the value measured by Shaw

and Hanratty [11] (for 700 < Sc < 33; 700, Kþ 	 Sc�0:704)

and the value measured by Incropera et al. [21] (for

0:7 < Pr < 25, Kþ 	 Pr�0:72). This issue has both theo-

retical significance, because the value of the exponent

depends on the asymptotic dependence of the eddy con-

ductivity close to the wall on the distance from the

wall, and practical interest, because such correlations

are implemented in the development of models for tur-

bulent transport. Further investigation with a wider

range of high Pr runs is needed in order to provide

a more definite statement regarding the value of the

exponent.

Figs. 10(a)–(c) present the mean temperature in wall

units downstream from the point of the step change in

wall heat flux for the high Pr fluids calculated with the

LST. The temperature profile resulting from Kader’s

semi-empirical formula is also shown as a reference. The

development of the temperature profile is mostly taking

place within a short distance from the edge of the heat

flux region.

5. Discussion and conclusions

Direct Numerical Simulation of turbulent heat

transfer in the Eulerian framework has been used in the

literature to gain insights into the mechanism of wall

transport. However, restrictions in the size of the com-

putations have not allowed the study of an extensive

range of Prandtl number fluids, with more difficulties

arising for the cases of higher Prandtl. The present work

utilized the Lagrangian Scalar Tracking method to de-

velop Eulerian results for the case of heat transfer from a

continuous line source at the wall of a turbulent flow

channel and for the case of a modified Graetz problem,

where a step change in wall heat flux takes place. The

results demonstrated the validity of LST as a method

for obtaining quantitative information for heat trans-

fer problems. Qualitative agreement with experimental

measurements was observed in all cases studied and

quantitative agreement was observed in most cases

studied. Of particular interest is the demonstration that

it is possible to use this technique at very high Pr, where

the application of Eulerian DNS is not feasible.

A Lagrangian analysis was used to interpret the

Eulerian results. The interpretation was based on the

fact that the dispersion of heat markers from a source at

the wall is a function of the time the markers have been

in the field and of the Prandtl number. The mean tem-

perature profile downstream from a continuous line

source was calculated as well as the ground level value of

the mean temperature. The dependence of Nu on the

distance from the thermal entry region for different Pr

was examined as well as the dependence of the heat

transfer coefficient on this distance. Also, the depen-

dence of turbulent transport properties on the molecular

Pr was studied.

The next challenge for LST is to develop a meth-

odology for obtaining second order statistics for the

temperature or the concentration field. It will be quite

interesting to compare such results with recent theories

for turbulent heat transport [39,40] that predict the

turbulent transport properties based on differential

models for the complete range of Pr. These theoretical

advances utilize the local turbulent shear stress and the

local heat flux density instead of the heat flux density

based on the friction velocity at the wall. The ability of

LST to simulate transport at different Pr suggests that

it is very appropriate for studies in this direction. Runs

with the use of many more markers (currently under-

way in our laboratory) will be needed for such an

analysis. Furthermore, a model that predicts the be-

havior of the probability function P1, which is the

building block for the Lagrangian reconstruction of the

Eulerian measurements, as a function of the Prandtl

number and the time elapsed since the marker release

is needed for the development of predictive models of

turbulent transport from the wall using the present

approach.
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